Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.03.12.532265

Résumé

The COVID-19 pandemic has illustrated the potential for monoclonal antibody therapeutics as prophylactic and therapeutic agents against pandemic viruses. No such therapeutics currently exist for other human coronaviruses. NL63 is a human alphacoronavirus that typically causes the common cold and uses the same receptor, ACE2, as the highly pathogenic SARS-CoV and SARS-CoV-2 pandemic viruses. In a cohort of healthy adults, we characterised humoral responses against the NL63 spike protein. While NL63 spike and receptor binding domain-specific binding antibodies and neutralisation activity could be detected in plasma of all subjects, memory B cells against NL63 spike were variable and relatively low in frequency compared to that against SARS-CoV-2 spike. From these donors, we isolated a panel of antibodies against NL63 spike and characterised their neutralising potential. We identified potent neutralising antibodies that recognised the receptor binding domain (RBD) and other non-RBD epitopes within spike.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.02.19.23286159

Résumé

SARS-CoV-2 breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months post-infection. Both BA.1 and BA.2 infection robustly boosted neutralisation activity against the infecting strain while expanding breadth against other Omicron strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modelling of neutralisation titres predicts that protection from symptomatic reinfection against antigenically similar strains will be remarkably durable, but is undermined by novel emerging strains with further neutralisation escape.


Sujets)
Douleur paroxystique
3.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-957030.v1

Résumé

CD4+ T cells play a critical role in the immune response to viral infection. SARS-CoV-2 infection and vaccination elicit strong CD4+ T cell responses to the viral spike protein, including circulating T follicular helper (cTFH) cells that correlate with the development of neutralising antibodies. Here we use a novel HLA-DRB1*15:01/S751 tetramer to precisely track spike-specific CD4+ T cells following recovery from mild/moderate COVID-19, or after vaccination with spike-encoding vaccines. SARS-CoV-2 infection induces robust S751-specific responses with both CXCR5- and cTFH phenotypes that are maintained for at least 12 months in a stable, CXCR3-biased, central memory pool. Vaccination of immunologically naïve subjects similarly drives expansion of S751-specific T cells with a highly restricted TCR repertoire comprised of both public and private clonotypes. Vaccination of convalescent individuals drives recall of CD4+ T cell clones established during infection, which are shared between the CXCR5- and cTFH compartments. This recall response is evident 5 days after antigen exposure and includes a population of spike-specific cTFH that persist in the periphery after losing expression of PD-1. Overall this study demonstrates the generation of a stable pool of cTFH and memory CD4+ T cells that can be recalled upon spike antigen re-exposure, which may play an important role in long-term protection against SARS-CoV-2 infection.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.24.21250074

Résumé

Endemic human coronaviruses (hCoV) circulate worldwide but cause minimal mortality. Although seroconversion to hCoV is near ubiquitous during childhood, little is known about hCoV-specific T cell memory in adults. We quantified CD4 T cell and antibody responses to hCoV spike antigens in 42 SARS-CoV-2 uninfected individuals. T cell responses were widespread within conventional memory and cTFH compartments but did not correlate with IgG titres. SARS-CoV-2 cross-reactive T cells were observed in 48% of participants and correlated with HKU1 memory. hCoV-specific T cells exhibited a CCR6+ central memory phenotype in the blood, but were enriched for frequency and CXCR3 expression in human lung draining lymph nodes. Overall, hCoV-specific humoral and cellular memory are independently maintained, with a shared phenotype existing among coronavirus-specific CD4 T cells. This understanding of endemic coronavirus immunity provides insight into the homeostatic maintenance of immune responses that are likely to be critical components of protection against SARS-CoV-2.

5.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.13.20248143

Résumé

The capacity of antibodies to engage with innate and adaptive immune cells via the Fc region is important in preventing and controlling many infectious diseases, and is likely critical in SARS-CoV-2 infection. The evolution of such antibodies during convalescence from COVID-19 is largely unknown. We developed novel assays to measure Fc-dependent antibody functions against SARS-CoV-2 spike (S)-expressing cells in serial samples from a cohort of 53 subjects primarily with mild-moderate COVID-19, out to a maximum of 149 days post-infection. We found that S-specific antibodies capable of engaging dimeric FcγRIIa and FcγRIIIa decayed linearly over time. S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declined linearly as well, in line with the decay of S-specific IgG. Although there was significant decay in S-specific plasma ADCC and ADP activity, they remained readily detectable by all assays in 94% of our cohort at the last timepoint studied, in contrast with neutralisation activity which was only detectable in 70% of our cohort by the last timepoint. Our results suggest that Fc effector functions such as ADCC and ADP could contribute to the durability of SARS-CoV-2 immunity, particularly late in convalescence when neutralising antibodies have waned. Understanding the protective potential of antibody Fc effector functions is critical for defining the durability of immunity generated by infection or vaccination.


Sujets)
COVID-19 , Maladies transmissibles
6.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

Résumé

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
7.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

Résumé

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Sujets)
Maladies virales , Lymphome B , COVID-19
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.01.278630

Résumé

SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assessed prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD was associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augmented neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines were comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.

9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.17.20104869

Résumé

The rapid global spread of SARS-CoV-2 and resultant mortality and social disruption have highlighted the need to better understand coronavirus immunity to expedite vaccine development efforts. Multiple candidate vaccines, designed to elicit protective neutralising antibodies targeting the viral spike glycoprotein, are rapidly advancing to clinical trial. However, the immunogenic properties of the spike protein in humans are unresolved. To address this, we undertook an in-depth characterisation of humoral and cellular immunity against SARS-CoV-2 spike in humans following mild to moderate SARS-CoV-2 infection. We find serological antibody responses against spike are routinely elicited by infection and correlate with plasma neutralising activity and capacity to block ACE2/RBD interaction. Expanded populations of spike-specific memory B cells and circulating T follicular helper cells (cTFH) were detected within convalescent donors, while responses to the receptor binding domain (RBD) constitute a minor fraction. Using regression analysis, we find high plasma neutralisation activity was associated with increased spike-specific antibody, but notably also with the relative distribution of spike-specific cTFH subsets. Thus both qualitative and quantitative features of B and T cell immunity to spike constitute informative biomarkers of the protective potential of novel SARS-CoV-2 vaccines.


Sujets)
COVID-19
10.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.05.11.20098459

Résumé

SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fc{gamma} receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fc{gamma} receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche